Marine Corps Air Station Miramar Installation Microgrid P-906

Mick Wasco, PE, CEM
Installation Energy Manager
Office (858) 577-6150
Cell (858) 997-8352
Mick.wasco@usmc.mil

MCAS Miramar Mission

Our mission is to maintain and operate the facilities and provide services and material to support the operations of 3d Marine Aircraft Wing and other tenant organizations.

MCAS Miramar Overview

MCAS Miramar 101

- Miramar has been a Navy or Marine Corps Air Station since 1940
- On average there are 200 aircraft assigned to Miramar
 - Roughly 100 Fixed Wing and 100 Rotor Wing and Tilt Rotor
- Approximately 9,300 Marines and Sailors are assigned to Miramar
- Approximately 1,700 civilians work on Miramar
- 900 or 10% of Miramar's Marines are female
- Approximately 17,000 dependents of Miramar service members attend schools in San Diego

Slide 4

Home to 3d Marine Aircraft Wing

Air Station Ground Training

Energy Strategy

Lines of Operation

Energy Information

Provide clear feedback to all energy users and emphasize user-controlled reductions.

Energy Efficiency

Invest USMC resources to improve facilities energy efficiency and cut energy intensity.

Renewable Energy

Pursue thirdparty financing for costeffective renewable energy resources.

Energy Security

Upgrade and integrate energy infrastructure to improve security and mitigate risk.

Energy Ethos

Recognize energy as a strategic resource by All Hands, 24/7/365, from Bases to Battlefield

Renewable Energy

PERFORATED PIPE

YOUR HOME

ELECTRIC GENERATOR

Renewables

Electric Vehicles

Navy Regional Roll Out - Phase 1

- 34 Vehicles arriving December 2016
- 12 EVSE "charging stations" at 4 locations
- Cost = \$427

Options funded by MCI West

- Provisions for expansion or private use
- Advanced Metering

Vehicle to Grid Demonstration

- Within Installation Microgrid Island

Microgrids at Miramar

Installation Level Microgrid

- Energy Security Microgrid for Critical Facilities
- > FY2014 ECIP Project
- Awarded in May for \$20M
- Projected Completion Nov 2018

Building Level Microgrid

- Zinc Bromide Flow Battery Installation for Islanding and Backup Power
- > FY2012 ESTCP Project
- > Cost ~\$3M
- Demonstrated June 2016

Partners

Installation Microgrid P-906

GENERAL DYNAMICS

Information Technology

Building Level Microgrid with Energy Storage

Building Level Microgrid Overview

System Integration

National Renewable Energy Lab

http://youtu.be/XriDpR14C-k

Unique Capabilites

Hardware-in-the-Loop at Megawatt-scale Power

Megawatt-scale power-in-the-loop allows researchers and manufacturers to conduct integration tests at full power and actual load levels in real-time simulation and evaluate component and system performance before going to market.

High Performance Computing Data Center (HPCDC)

Petascale computing at the HPCDC enables unprecedented large-scale modeling and simulation of material properties, processes, and fully integrated systems that would otherwise be too expensive, too dangerous, or even impossible to study by direct experimentation.

Research Electrical Distribution Bus (REDB)

The ultimate power integration circuit, made up of two AC and two DC ring buses, connects multiple sources of energy and interconnects "plug-and-play" testing components in all the labs.

Supervisory Control and Data Acquisition (SCADA) Systems

The SCADA system monitors and controls REDB operations and safety and gathers real-time, high-resolution data for collaboration and visualization.

Data Analysis and Visualization

Analysis and visualization capabilities at the ESIF go beyond what is found in a typical utility operations center. Fully integrated with hardware-in-the-loop at power capabilities, an electrical distribution bus, a SCADA system, and petascale computing, the ESIF allows researchers and NREL partners to visualize complex systems simulations and operations in a completely virtual environment.

Energy Systems Integration Facility

NREL Test Setup Interconnect

September 6, 2016

Slide 17

Live Testing at NREL

Delivery Pictures

MCAS Miramar Demonstration

Island Results

Energy Resilience

P-906 Installation Microgrid Overview

Project Description

- Install diesel (4 MW) and natural gas (3 MW) generation with the ability to power 100% of the flight line and support facilities (100+ facilities = 4 - 7 MW)
- Incorporate existing onsite landfill power generation (3.2 MW) and existing PV generation (1.3 MW) into microgrid islanding as much as feasible.
- > Enable generation to participate in demand response during grid connection.
- Build Energy Operations Center
- > Cyber Security accreditation through Risk Management Framework

Project Details

- Energy Security
 Microgrid for Critical
 Facilities
- FY2014 ECIP Project
- Programmed Cost \$18M
- Awarded in May 2016 for \$20M
- ProjectedCompletion Nov 2018

Project Goals

- Energy Security (Back-up Power)
- 2) Renewable Integration
- Revenue/Grid Support

NREL

- □ NREL complete Net Zero Energy Installation Assessment in 2010
- □ NREL CORE microgrid assessment completed in 2012
 - Critical load analysis
 - Generation option analysis
- P-906 Authority to Design given in August 2013

 - NREL contracted for consultation
- □ Post award "owner's engineer"Services awarded in October 2016
 - Design Support
 - Quality Control
 - True Third Party
 - ✓ Commissioning Authority
 - ✓ Report Generation
 - ✓ Economic Analysis

P-906 Microgrid

Existing Assets

3.2 MW Landfill Gas Energy Plant

Regional SCADA System

80 Bldg. Central DDC System

Smart Microgrid

Diesel and Natural Gas Power Plant

Energy Operations
Center

1 MW PV Carports

356 kW Thin-Film PV Roof Systems

230 AMI Meters

P-906 Microgrid Map

September 6, 2016

P-906 Microgrid Operations Center

Slide 28

P-906 Power Plant

•

P-906 Power Plant

Tier4 certified diesel generator set QSK60 series engine

Currinins

Power Generation

U.S. EPA

Engine certified to US EPA Nonroad 40CFR1039 and Stationary (Emergency and Non-Emergency) US EPA NSPS, 60CFR Subpart IIII Tier4 Emissions Standards.

1450 kW - 2250 kW 60 Hz

Natural gas generator set QSK60 series engine

> > Specification sheet 1160 kW - 1400 kW

Exhaust emissions – Lean burn technology provides exhaust emissions levels as low as 350 mg/Nm³ (0.7 g/hp-hr) NO₂.

SDAPCD Calculated Cancer Risk Thresholds Scenario D 1 in a million (1x10°6) 10 in a million (1x10°) with T-BACT 3646000 3644000 3642000 to Calculated Cancer Risk at Facility 3640000 3638000 Diesel Engines: 3636000 Natural Gas Engines 3634000 1E-006 482000 484000 486000 488000 490000 492000 494000 496000 498000 500000

P-906 Concept of Operations

MOAC M'	Summer (May 1 - October 31)					
MCAS Miramar P906 Microgrid Grid Connected Mode Theory of Operations	Weekdays (Mon-Fri)				Weekends & Holidays	
	Semi-Peak	Peak	Semi-Peak	Off-Peak	Off-Peak	
	6am - 11am	11am - 6pm	6pm - 10pm	10pm - 6am	All hours	
1400 kW NG Genset	Operate to offset required to main	Off	Off			
1400 kW NG Genset		import.	Off	Off		
1825 kW Diesel Genset	Operate in response to failure of a single landfill gas generator			Off	Off	
1825 kW Diesel Genset	Off	Operate as required for purposes of peak shaving and/or demand response. Demand response level determined by operator via collaboration with electric utility	Off	Off	Off	

Prime Permitted Operating Hours

- Tier 4 Certified Diesel = 1500 Hours/Year
- BACT Natural Gas = 5000 Hours/Year

Opportunity	Approach Summary	Potential Annual Savings
Base load Energy Cost Reduction	Operate new natural gas-fired generators for approximately 2800 hours / year to reduce base load energy (i.e. kWh) charges during the utility rate structure's peak and semi peak time periods.	\$150,000 - \$200,000
Base load Demand Cost Reduction	Avoided Demand charges due to operation of the natural gas-fired generators during peak and semi-peak periods.	\$150,000 - \$200,000
Demand Cost Reduction – Respond to landfill-gas or natural gas fueled generator(s) failure	Operate new diesel-fired generators to replace the output of MCAS Miramar generation assets that fail during semipeak and off-peak hours	\$400,000 - \$500,000
Demand Cost Reduction – Peak shaving	Operate natural gas and diesel-fired generators to shave peak demand during the utility rate structure's peak and semi-peak time periods	\$400,000 - \$450,000

MCAS Miramar Load Profile

September 6, 2016

Slide 32

MCAS Miramar Load Profile

Landfill Gas Power Reliability

Landfill Power

Installation Load from SDG&E

Load Profile with LFG Backup

Microgrid Peak Shaving & LFG Backup

Microgrid Operation during Low Demand

September 6, 2016

Microgrid with LFG Expansion

Monthly Microgrid Operations

Demand Response

"Expand Microgrid functionality for best return as opposed to just islanding" – ASN McGinn

Microgrid needs to support of the "macro-grid"... - Byron Washom

CPUC: Emergency Generation Limitations:

"Participating customers are prohibited from achieving energy reductions by operating backup or onsite standby generation"

Microgrid Operation with Demand Responsion Event

Monthly Operation with Demand Response Event

Renewable Portfolio

SDG&E

Renewable: 24%

o Biomass & waste: 3.0%

o Geothermal: 2.0%

o Solar: 4.0%

o Wind: 15.0%

Non-renewable:

Coal: 3.0%

Natural gas: 67.0%

In 2013

MCAS Miramar

Renewable: 55%

PV: 5%

LFG: 50%

75% in 2019

Non-Renewable: 45%

20% in 2019!!!

September 6, 2016

Slide 43

Hours and Savings

Generation Type	Permitted Hours (hrs/yr)	Estimated Hours of Operation (hrs/yr)	Potential Cost Savings
BACT Natural Gas Engines	5000	2100	~ \$300K
Tier 4 Diesel Engines – Landfill Back up		950	~ \$250K
Tier 4 Diesel Engines – Demand Response	1500	~50	~ \$200K-\$400K
Additional Landfill Power	8736	7786	~ \$750K

Total Microgrid Potential Savings = \$950K /year

Slide 44

September 6, 2016

Take Away

- MCAS Miramar is currently about 50% renewable electric and is targeting to be 75% by 2019
- Energy Resiliency assets whose number one function is back up power in microgrid island mode will be multi-purposed for macro-grid support and cost savings in grid connected mode
 - ► BACT Natural gas engines used for peak shaving
 - ⊼ Tier 4 Diesel engines used to back up LFG Renewable Power and possibly Demand Response
- Microgrids may be highly renewable, however a certain amount of conventional generation may be required for reliability and surety
- Distributed Energy Resources installed by customers can provide redundancy for the customer as well as the utility
- Is this scenario part of the business case for microgrids?

Contact Info

Mick Wasco – Installation Energy Manager MCAS Miramar (858) 577-6150

Mick.wasco@usmc.mil

Michael McConnell – Utilities Planner MCI West (410) 310 7560

McConnell_Michael@bah.com

Jeff Coles – Innovation & Solutions Architect Schneider Electric (206) 793-5856

jeff.coles@schneider-electric.com

5, 2016 Slide 47